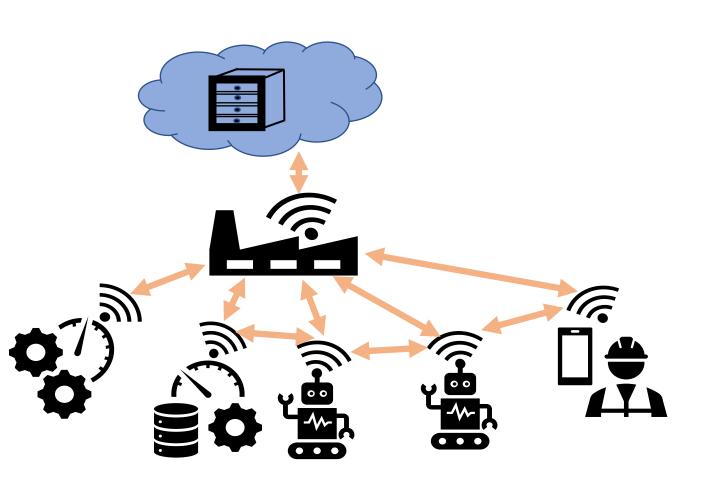
Wireless network for AGV

Associate professor Anne-Lena Kampen

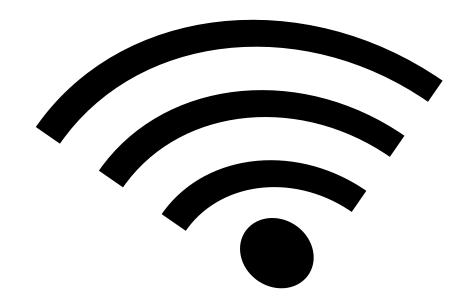
Western Norway University of Applied Sciences, Bergen, Norway <u>alk@hvl.no</u> Western Norway University of Applied Sciences


Outline of the presentation

- Why wireless
- Communication Requirements
- Presentation / discussion of protocols / solutions
- A kind of conclusion

Why wireless

- AGV must be able to move freely across the factory floor
- Neat environments simplify maneuvering moving nodes
- Prevent cutting its own cables
- Prevent getting tangled into its own cable
- Equipping machinery with wireless instead of wired communication makes it easier to change factory layout if needed or desirable



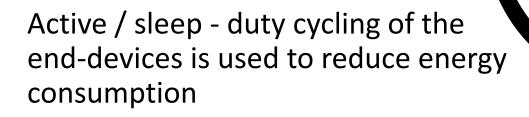
Various wireless protocols

• The wireless protocols have different characteristics in terms of:

- Delay
- Range
- Throughput
- Reliability

AGV communication requirements

- Reliable
- Delay lower than a given threshold
- Availability
- Energy-awareness
- Security
- Insusceptible of EMI (electromagnetic interference)
- Maintain connectivity while moving


Some potential wireless protocols

- Long Range Wireless Technologies- LoRaWAN
- Celluar: 5G
- IEEE802.15.4
- ZigBee
- WirelessHART
- ISA100.11A
- IEEE802.11

Long Range Wireless IoT Technologies

- Some advantages
 - Long range
 - Ultra low power on the end points
 - Low cost of operations
 - Low cost of ownership.
- Some disadvantages
 - Low data rate
 - Delay

- Different solutions used:
- Downlink only after uplink: Enddevise stays awake a limited time after transmission
- Scheduled downlink: A node periodically wake up

LPWAN LoRa

- Sub-GHz ISM band
- Phy layer, proprietary
 - CSS (Chirp Spread Spectrum)
 - The data rate ranges from 300 bps to 50 kbps
 - Link budget 154 dB
- LoRaWAN, layer above physical
 - Unslotted Aloha –based
 - Topology: star-of-star topology
 - End device does not associate with a certain gateway, only to the backhaul NetworkServer
 - Three different classes of end-devices
 - A: listen to download communication only shortly after uplink transmission
 - B: can additionally schedule downlink reception from base station at certain intervals
 - C: have capability to continuously listen

[1] Almuhaya, Mukarram AM, et al. "A Survey on LoRaWAN Technology: Recent Trends, Opportunities, Simulation Tools and Future Directions." *Electronics* 11.1 (2022): 164.

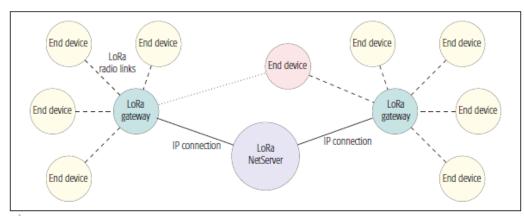
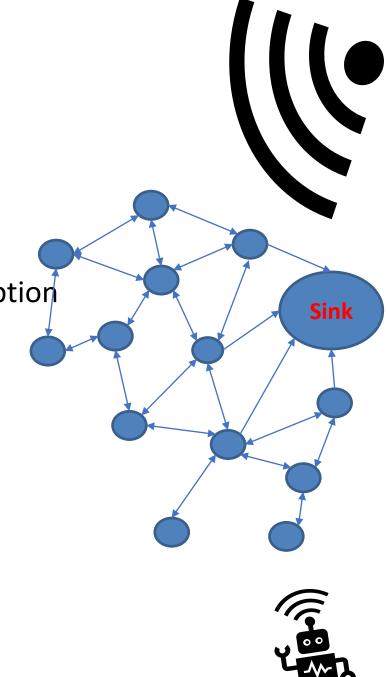



Figure from: M. Centenaro, L. Vangelista, A. Zanella, and M. Zorzi, "Long-range communications in unlicensed bands: The rising stars in the IoT and smart city scenarios," *IEEE Wireless Communications,* vol. 23, no. 5, pp. 60-67, 2016. Long Range Wireless IoT Technologies; Network layer

- Long range transmission compared to multihop
- Advantage
 - Multihop have unequal and unpredictable energy consumption
 - Management traffic, forwarding
 - Multihop require dense and expensive deployment of infrastructure
- Disadvantage
 - Long range have lower data rate
 - More delay?

Cellular – 5G Wireless

- High-frequency 3~300 GHz
- Data rate 1 ~ 10 (20?) Gbps
- Low latency: 1ms (according to the 5G- providers)
- Support IoT (M2M)
- Virtual networks (5G slicing) tailored to each use case.
- Massive MIMO- serve multiple users/ combine with beamforming
- Beamforming
- Direct Device to Device (D2D)
- To support massive IoT connections:
 - Heterogeneous Networks (HetNets), small cells having low transmission power

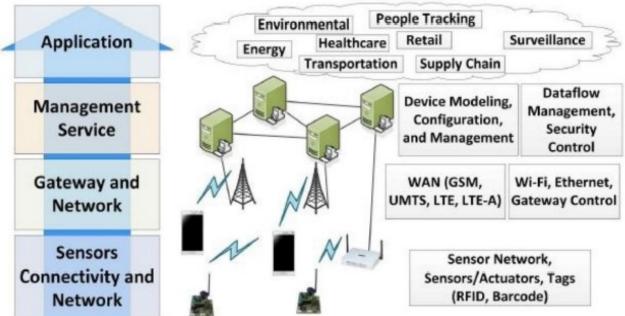
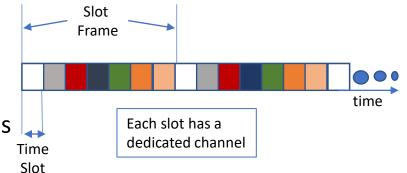
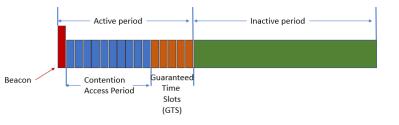


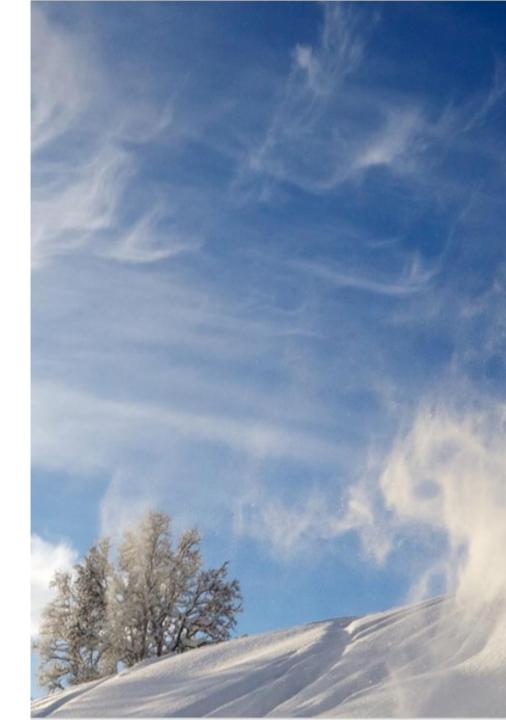
Figure from: Attaran, Mohsen. "The impact of 5G on the evolution of intelligent automation and industry digitization." Journal of Ambient Intelligence and Humanized Computing (2021): 1-17.

Cellular – 5G Wireless


- Some disadvantages
- Cost of spectrum
- Base station density
- Equipment cost / amount of equipment (MIMO), small cells
- Management of large number of small cells


•

Conclusions


- Wireless communication is needed to support moving nodes
 - Avoid cutting cables
 - Neat environments
- Communication in industrial environments are subject to both spatial and temporal changes.
- The moving AGV may require adaptable communication solutions
- Technology solutions
 - WirelessHART and ISA100.11a:
 - Timeslot communication to reduce the number of collisions
 - Channel hopping to reduce interference
 - ZigBee
 - Let nodes enter sleep state to reduced energy consumption
 - There is a general tradeoff between delay and energy consumptior
 - LPWAN (ex. LoRaWAN)
 - Long range low cost, low energy
 - Cellular network:
 - QoS guarantee is easier in the licensed spectrum

Thank you for listening !

