

Daniel Kostrzewa, Bohdan Shubyn, Paweł Benecki, Piotr Grzesik, Dariusz Mrozek

18.05.2022

Silesian University of Technology

FEDERATED LEARNING AND DEEP LEARNING FOR AGV ANOMALY DETECTION

- 1. Forecasting of Energy Consumption
- 2. Data Sets, Models, and Numerical Experiments
- 3. Federated Learning for AGV Anomaly Detection
- 4. Conclusions

Daniel Kostrzewa, Bohdan Shubyn, Paweł Benecki, Piotr Grzesik, Dariusz Mrozek

18.05.2022

Silesian University of Technology

DEEP LEARNING FOR AGV ANOMALY DETECTION

Forecasting of Energy Consumption

- 1. Some problems may be detected during scheduled checks
- 2. Others have to be found by different means
- 3. Telemetry is used for this purpose
- 4. Forecasting of energy consumption is the first step for the anomaly detection

Forecasting of Energy Consumption

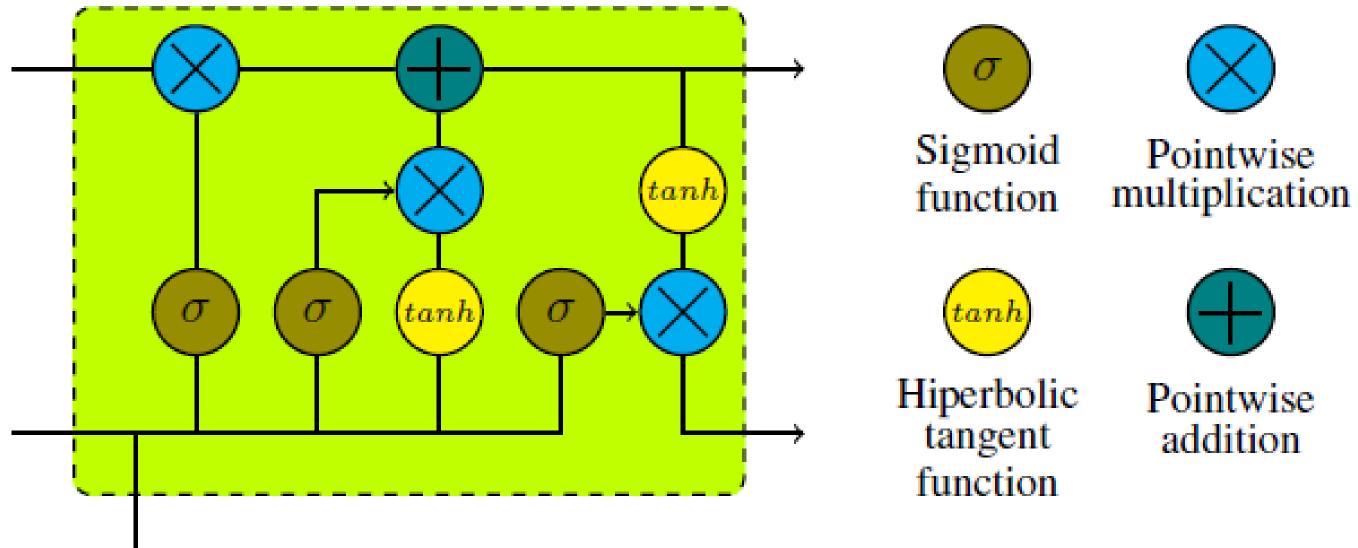
- 1. Anomaly detection can be formulated as a one-class classification
- 2. Machine Learning models are learned with data considered as normal
- 3. Models are evaluating unseen data and compute an anomaly score
- 4. The evaluation is often the difference between forecasted and actual values

- 1. Formica-1 (2022): 9 trials, avg. seq. length 1600 pts, 34 features
- 2. Husky A200 (2021): 92 trials (113 sequences), avg. seq. length 4200 pts, 22 features
- 3. IEEE Battery (2020): 72 sequences, 4k-56k seq. length, 13 features

Data Sets

Machine Learning Models

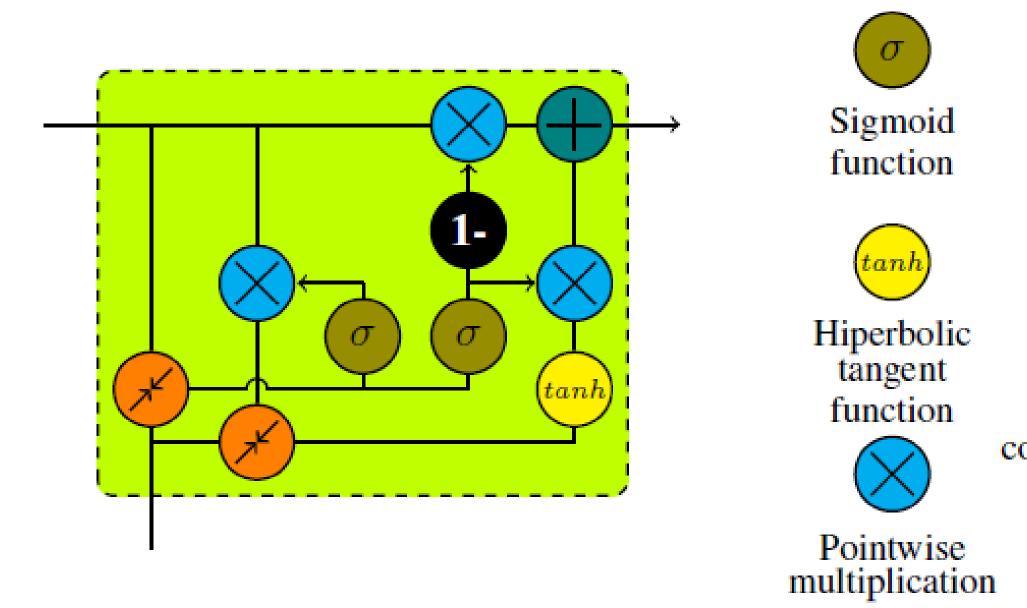
1. LSTM cells (1- and 2-layer architectures)



Pointwise

Machine Learning Models

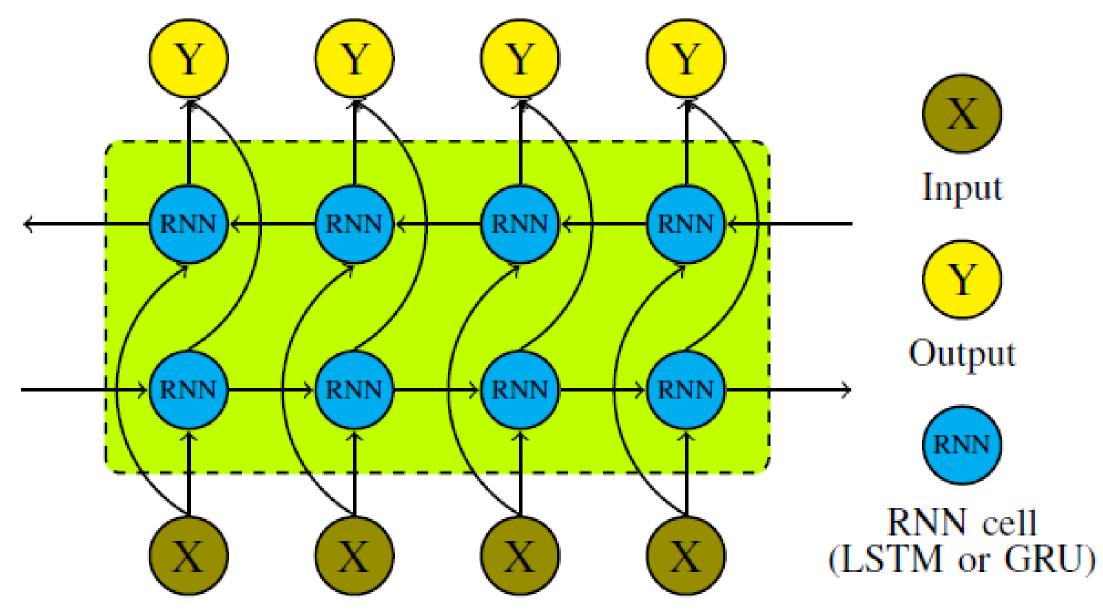
2. GRU units (1- and 2-layer architectures)



Vector concatenation

Machine Learning Models

3. and 4. BiLSTM and BiGRU (1- and 2-layer architectures)



- 2. Evaluation metrics
 - Mean Square Error (MSE) 1.
 - 2. Mean Absolute Error (MAE)
 - 3. Mean Absolute Percentage Error (MAPE)

1. Goal – forecast of power consumption signal based on other telemetry signals

Step 1 – Identification of model and training scheme

- 1. 8 different architectures (LSTM, GRU, BiLSTM, BiGRU; 1- and 2-layers)
- 2. Different history length (10-190 points, step 20)
- 3. 3 data sets
- 4. 240 trainings in total
- 5. Result best architectures and history length for each data set

Step 2 – Input signals correlation

- 1. Power consumption singal depends on the other signals to a very different level
- 2. Common approach well-built deep network can learn all dependencies...
- 3. ... with huge cost: increased data, computing power, and time requirements
- 4. Pearson's correlation coefficients between power consumption and other signals
- 5. Result thresholds set (0.05, 0.1, 0.2, 0.3, 0.4) to reduce number of input signals

Step 3 – Feature selection research

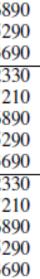
1. Subsets of features created based on identified thresholds (Formica-1 – 4 subsets,

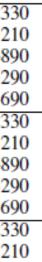
Husky A200 – 4 subsets, IEEE Battery – 3 subsets)

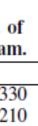
- 2. 3 best models from step 1 for each data set were selected
- 3. 33 additional trainings performed

Final results...

Model	$L_{hist.}$	Features	$\mu_{MSE}(Val)$	$\mu_{MSE}(T)$	$\mu_{MAE}(T)$	$\mu_{MAPE}(T)$	Pred. time	No. of param.
Formica-1								
LSTM 2-layers		all	0.0209	1.0086	0.6846	2.3460	0.0426	92330
	50	$corr \ge 0.05$	0.0304	1.0162	0.6362	2.6156	0.0407	87210
		$corr \ge 0.1$	0.0278	1.1113	0.7108	4.1627	0.0434	86890
		$corr \ge 0.2$	0.0613	1.0511	0.6632	1.7265	0.0400	85290
		$corr \ge 0.4$	0.1536	1.0481	0.7208	2.0023	0.0416	83690
LSTM 2-layers	150	all	0.0294	1.0891	0.7430	2.4750	0.0885	92330
		$corr \ge 0.05$	0.0366	1.0030	0.6237	2.4240	0.0843	87210
		$\operatorname{corr} \ge 0.1$	0.0425	1.0186	0.6689	1.9178	0.0849	86890
		$\operatorname{corr} \ge 0.2$	0.0884	1.0830	0.7341	1.9567	0.0833	85290
		$\operatorname{corr} \ge 0.4$	0.1172	1.0866	0.7369	2.0022	0.0825	83690
	170	all	0.0299	1.0799	0.7434	2.4378	0.1000	92330
LSTM 2-layers		$corr \ge 0.05$	0.0424	1.0447	0.6354	2.8822	0.0961	87210
		$corr \ge 0.1$	0.0419	0.9887	0.6615	2.5382	0.0957	86890
		$corr \ge 0.2$	0.0798	1.0813	0.7381	2.0794	0.0917	85290
		$\operatorname{corr} \ge 0.4$	0.1475	1.0814	0.7371	2.0403	0.0917	83690
Husky A2	200							
		all	0.0711	1.1849	0.8166	6.7158	0.0546	85610
LSTM		$corr \ge 0.05$	0.1071	1.0667	0.7401	4.8691	0.0554	83690
2-layers	10	$corr \ge 0.1$	0.1126	1.0491	0.7632	5.5597	0.0538	81770
2-1aye15		$corr \ge 0.2$	0.1450	0.7214	0.6033	5.3452	0.0537	80170
		$corr \ge 0.4$	0.3772	0.7142	0.6245	5.4322	0.0540	79210
		all	0.0749	1.4002	0.8915	7.8652	0.0993	85610
LSTM		$corr \ge 0.05$	0.0980	1.3614	0.8816	5.3055	0.0985	83690
2-layers	50	$corr \ge 0.1$	0.1016	1.2507	0.8295	6.6086	0.1002	81770
2-layers		$corr \ge 0.2$	0.1243	1.0034	0.7182	5.7255	0.0969	80170
		$corr \ge 0.4$	0.2352	0.7015	0.6166	4.1202	0.0924	79210
	30	all	0.0880	1.5979	0.9469	7.6308	0.0767	85610
LSTM		$corr \ge 0.05$	0.1176	1.0802	0.7777	4.6433	0.0772	83690
		$corr \ge 0.1$	0.1087	1.0650	0.7526	4.3236	0.0783	81770
2-layers		$corr \ge 0.2$	0.1355	0.8857	0.6691	5.6918	0.0743	80170
		$corr \ge 0.4$	0.2176	0.6681	0.5876	3.9296	0.0748	79210
IEEE Bat	tery							
	70	all	0.0102	0.2609	0.3348	2.8338	0.4482	66890
BiLSTM		$corr \ge 0.05$	0.0238	0.2387	0.3003	2.4243	0.4474	59850
		$corr \ge 0.3$	0.0321	0.2411	0.2794	2.3744	0.4327	56650
1-layer		$\operatorname{corr} \ge 0.4$	0.0245	0.5294	0.3711	3.0120	0.4395	56010
	10	all	0.0109	0.2367	0.3130	2.5488	0.2607	221770
BiLSTM 2-layers		$corr \ge 0.05$	0.0116	0.2883	0.3405	2.4717	0.2605	214730
		$\operatorname{corr} \ge 0.3$	0.0292	0.2311	0.2983	2.3042	0.2595	211530
		$\operatorname{corr} \ge 0.4$	0.0529	0.3973	0.3573	2.5904	0.2582	210890
	70	all	0.0114	0.2328	0.3373	3.2991	0.3181	33450
ISTM		$corr \ge 0.05$	0.0228	0.2268	0.3218	2.4583	0.3069	29930
LSTM 1-layer		$\operatorname{corr} \ge 0.3$	0.0279	0.2642	0.3056	2.3422	0.3005	28330
		$\operatorname{corr} \ge 0.4$	0.0272	0.4957	0.3730	3.0981	0.3053	28010



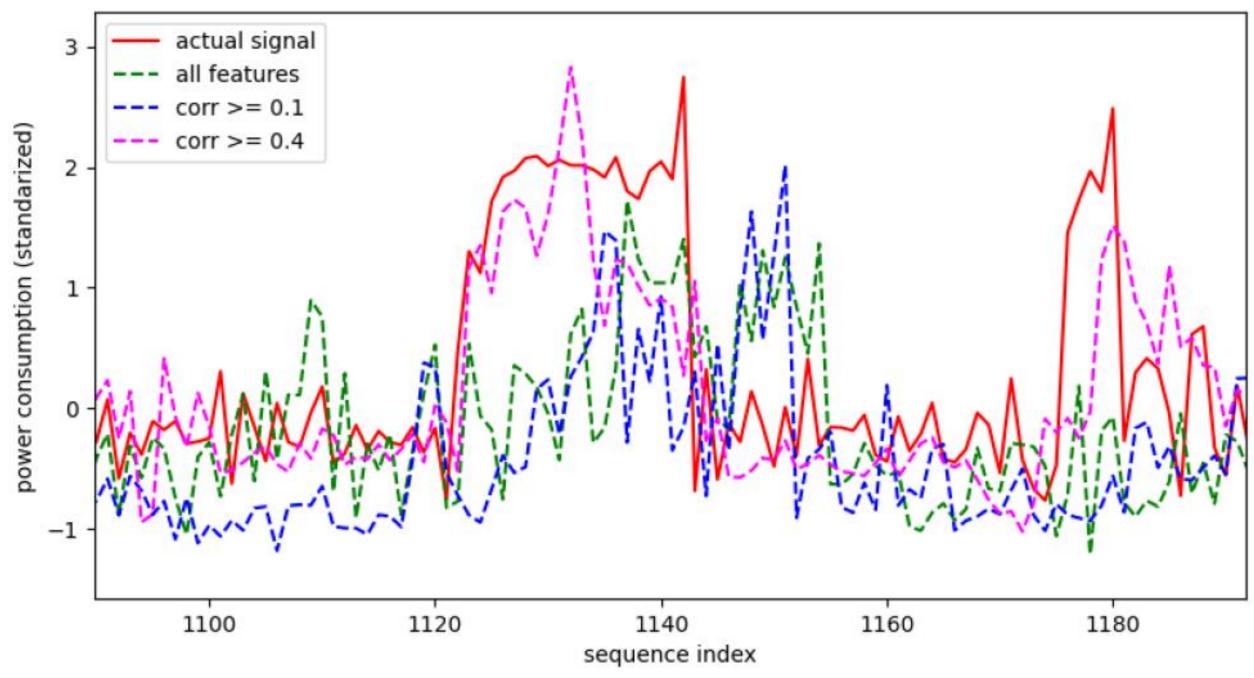




Final results...

Improvement	Formica-1	Husky A200	IEEE Battery
MSE	2%	44%	13%
MAE	9%	28%	17%
MAPE	26%	41%	19%
Prediction time	8%	7%	6%
No. of model params.	9%	7%	16%

Numerical Experiments



- 1. Usage of LSTM, GRU, BiLSTM, BiGRU models for energy consumption prediction 2. Forecasting works well for all data sets
- Feature selection generalization, processing time, and size of the final model 3.

- 1. Increase forecasting results (with historical energy consumption optional)
- 2. Enlarge Formica-1 data set (additional signals and scenarios)
- 3. Further reduce of processing time and size of the model (knowledge distillation)
- 4. Research on anomaly detection based on previous research

Conclusions and future work

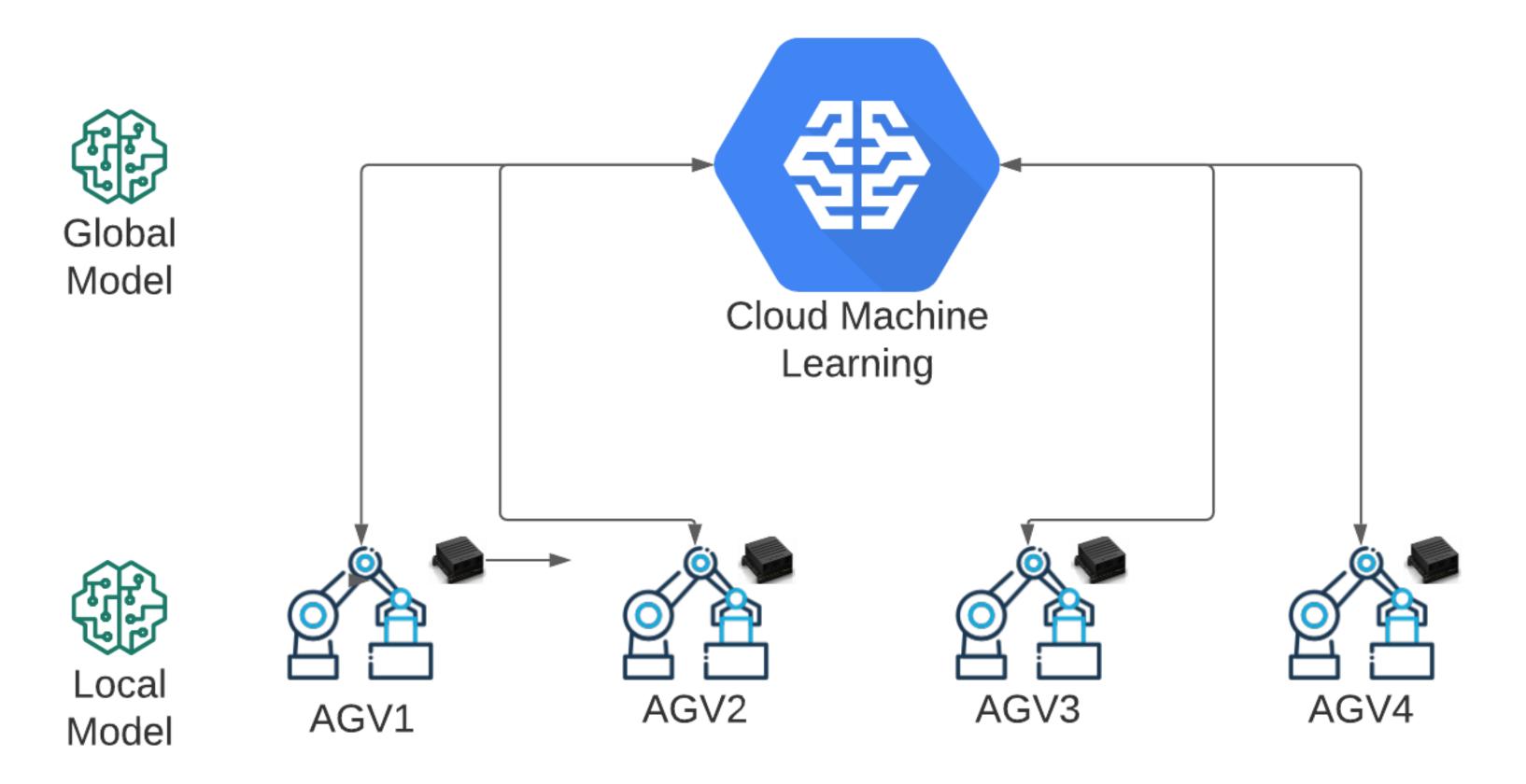
Daniel Kostrzewa, <u>Bohdan Shubyn</u>, Paweł Benecki, Piotr Grzesik, Dariusz Mrozek

Silesian University of Technology

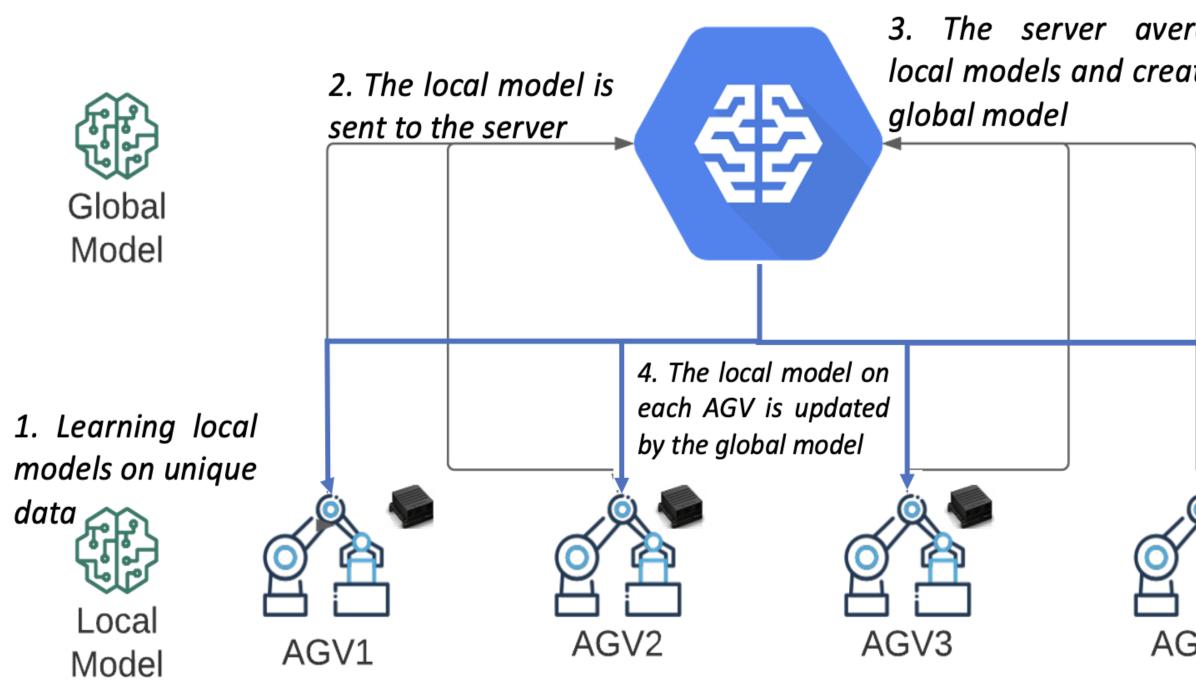
FEDERATED LEARNING FOR AGV ANOMALY DETECTION

18.05.2022

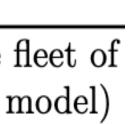
Federated Learning for AGV Anomaly Detection



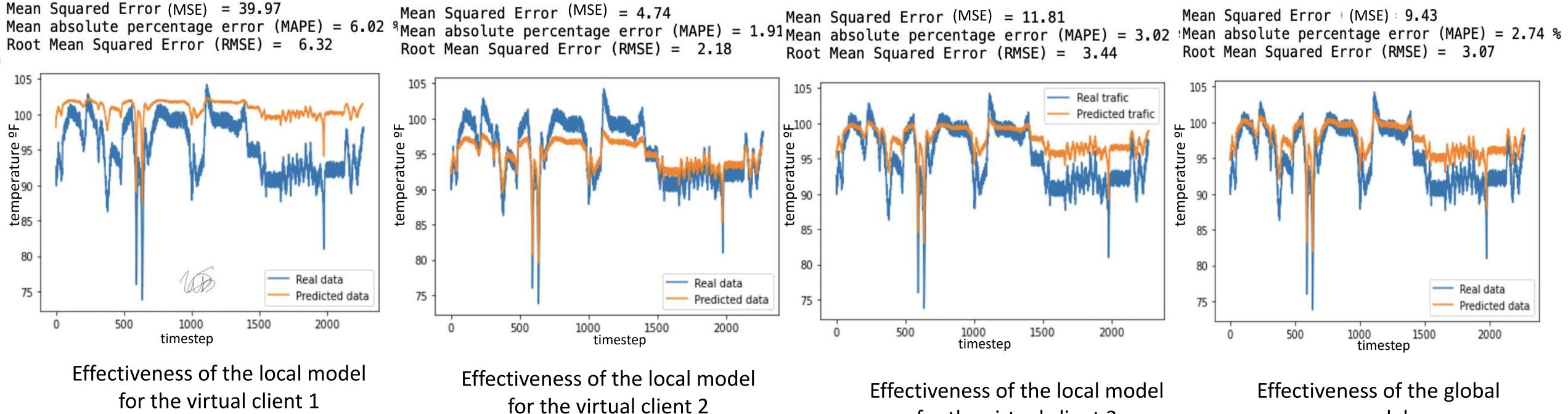
Distributed architecture with AI on the on-board IoT devices



erages ates a	Ā	Algorithm 1: Algorithm of the round				
ules u		Data: lm (Local models on AGVs), gm (Global model), $AGVs$ (the				
		AGVs), N (the number of AGVs), sgm (Server with a global r				
		Result: $upAGVs$ (AGVs updated by global model)				
	1	for $i \leftarrow 1$ to $AGVs$ do				
	2	Train the RNN of AGV_i locally on unique, AGV-specific data;				
┪	3	$lm \leftarrow$ weights of the local RNN;				
GV4	4	4 end				
	5	foreach $lm \in AGVs$ do				
	6	Send lm to the sgm ;				
	7	end				
	8	Build the gm by averaging lms on the sgm ;				
		foreach $lm \in AGVs$ do				
0 4 4	10	Update lm by the sgm ;				
	11	end				

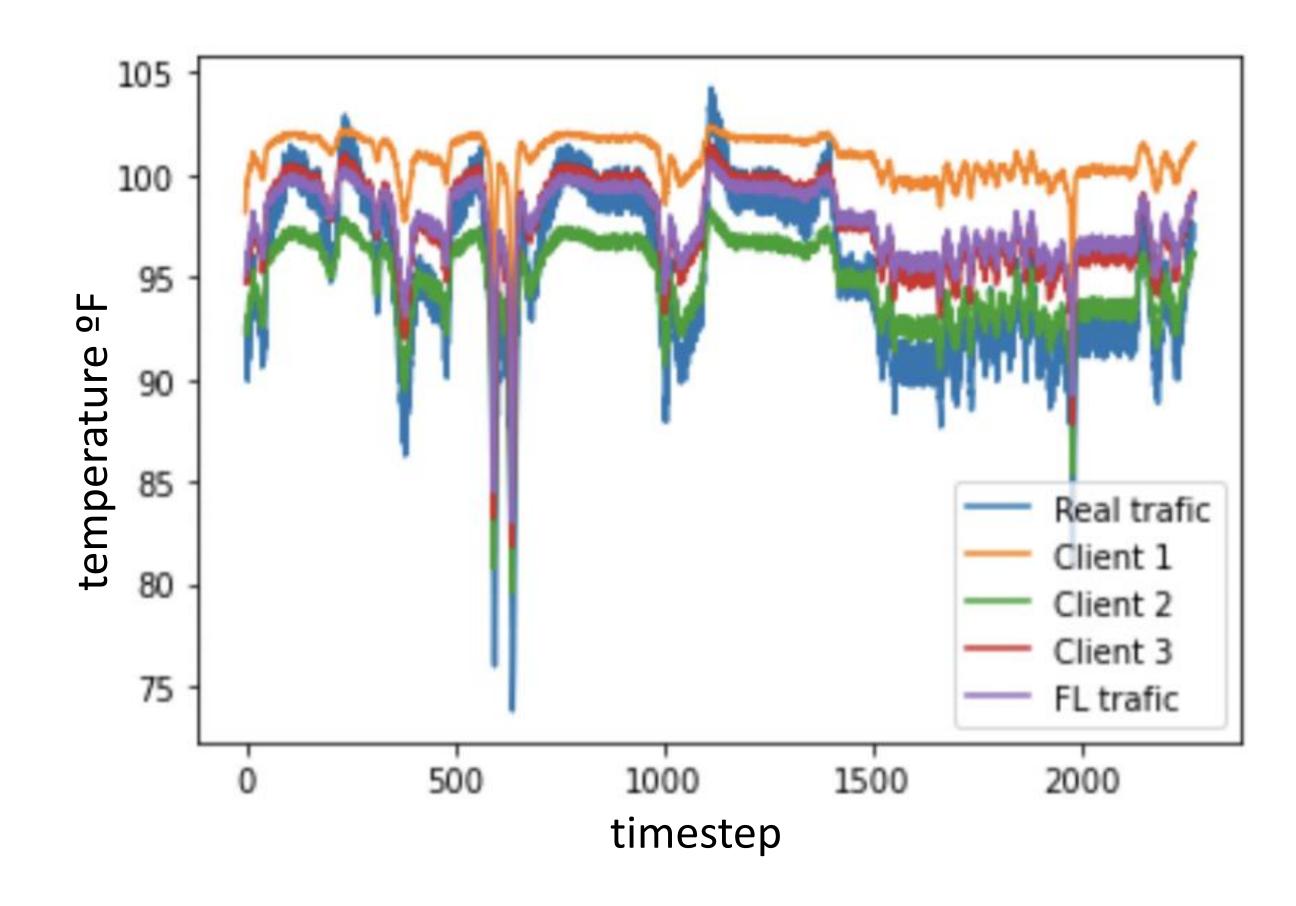


Experiment



for the virtual client 3

model



Experiment

Client/Metric	MSE	MAPE	RMSE
Local Model Client 1	39,97	6.02%	6,32
Local Model Client 2	4,74	1.91%	2,18
Local Model Client 3	11,81	3.02%	3,44
Global model (FL)	9,43	2.4%	3,07

THANK YOU FOR YOUR ATTENTION

18.05.2022

Silesian University of Technology

FEDERATED LEARNING AND DEEP LEARNING FOR AGV ANOMALY DETECTION