Maintenance of Energy Consumption: Prediction and Management

Presenter: Jia-Hao Syu Supervisor: Jerry Chun-Wei Lin

(lacksquare

Jia-Hao Syu

Ph.D. candidate in National Taiwan University

One-year visiting in Western Norway University of Applied Sciences

Website

Jia-Hao Syu

Research Focus: Data Science, Machine Learning, Optimization

Field: Finance, Economic, Energy

Website

01

 \bigcirc

Roadmap

Prediction

Predict the energy consumption of tasks, AGVs

Management

Manage the energy usage, charging, pricing (priority)

Scheduling

Schedule the tasks assign to AGVs

Developed Models

 "An IoT-based Data-Driven Hedge System of Solar Power Generation", IEEE Internet of Things Journal, 2021.

Goal: Predict solar power generation

Hedge low-radiation risk

Developed Models

 "Multi-Head Learning Model for Power Consumption Prediction of Uncrewed Ground Vehicles", submitted to AAAI 2023.

Goal: Predict the power consumption (watt) of UGV

()

Dataset: "Energy consumption data for package delivery with an Uncrewed Ground Vehicle"

- 10 HZ data of Husky A200 UGV
- Different routes and payloads
- Features: position, motor, electronic info
- Predict: <u>power consumption</u> (watt or $A \cdot V$)

Transfer Learning

- Route A Source: 24 trials for training, 10 for testing
- Route B Target: 25 trials for training, 10 for testing
- Route C FewShot: 7 trials for training, 10 for testing

5 for testing

• Route D - ZeroShot:

MAE Evaluation

0.1 second after

Network	Linear					CNN				
Route	A	В	С	D	Aver.	A	В	С	D	Aver.
Benchmark	34.5	16.1	22.2	116.4	47.3	44.8	16.5	21.1	112.1	48.6
EMH	43.3	<u>15.7</u>	24.0	133.8	54.2	44.6	<u>15.1</u>	25.0	117.4	50.5
2SMH	<u>32.4</u>	16.2	29.9	<u>81.4</u>	<u>40.0</u>	<u>34.2</u>	15.3	<u>16.6</u>	<u>80.7</u>	<u>36.7</u>
										27 21 21
Network			LSTM	[T	ransform	ner	
Network Route	A	В	LSTM C	[D	Aver.	A	Ti B	ransforr C	ner D	Aver.
Network Route Benchmark	A 109.5	B 41.5	LSTM C 47.3	D 216.6	Aver. 103.7	A 109.6	Ti B 41.5	ransforr C 47.3	ner D <u>216.5</u>	Aver. 103.7
Network Route Benchmark EMH	A 109.5 109.4	B 41.5 22.6	LSTM C 47.3 19.1	D 216.6 217.1	Aver. 103.7 92.1	A 109.6 109.5	Ti B 41.5 33.0	ransforr C 47.3 44.5	$\frac{D}{\frac{216.5}{216.8}}$	Aver. 103.7 101.0

A: Source B: Target C: FewShot D: ZeroShot

MAE Evaluation

0.5 second after

Network	Linear					CNN				
Route	A	В	С	D	Aver.	A	В	С	D	Aver.
Benchmark	63.0	26.6	<u>37.9</u>	171.4	74.7	63.3	25.5	35.1	156.6	70.1
EMH	65.7	<u>24.7</u>	67.4	165.8	80.9	62.6	24.8	37.8	178.7	76.0
2SMH	<u>60.3</u>	26.9	63.6	<u>137.6</u>	<u>72.1</u>	<u>61.4</u>	25.1	<u>30.6</u>	<u>126.8</u>	<u>60.9</u>
Network			LSTM			Transformer				
Route	A	В	С	D	Aver.	A	В	С	D	Aver.
Benchmark	109.9	41.5	47.3	214.7	103.3	109.9	41.5	47.3	214.9	103.4
EMH	109.4	27.2	31.4	217.3	96.3	<u>109.5</u>	41.5	46.3	217.0	103.6
2SMH	<u>108.6</u>	<u>24.6</u>	<u>30.3</u>	<u>190.6</u>	<u>88.5</u>	<u>109.5</u>	<u>35.6</u>	<u>43.7</u>	217.0	<u>101.4</u>

A: Source B: Target C: FewShot D: ZeroShot

MAE Evaluation

1.0 second after

Network	Linear							CNN		
Route	A	В	С	D	Aver.	A	В	С	D	Aver.
Benchmark	73.7	32.3	47.4	160.6	78.5	<u>71.6</u>	29.5	39.6	257.3	99.5
EMH	82.4	28.2	44.6	193.9	87.3	77.1	<u>27.6</u>	59.9	164.7	82.3
2SMH	75.7	<u>26.6</u>	<u>41.5</u>	<u>145.8</u>	<u>72.4</u>	71.8	29.2	<u>34.1</u>	<u>142.3</u>	<u>69.3</u>
Network			LSTM	[Transformer				
Route	A	В	С	D	Aver.	A	В	С	D	Aver.
Benchmark	109.6	41.5	47.9	216.6	103.9	109.3	41.5	47.3	217.8	104.0
EMH	106.2	29.9	37.2	215.8	97.3	109.5	37.4	<u>34.9</u>	<u>217.0</u>	<u>99.7</u>
2SMH	<u>83.2</u>	<u>29.3</u>	<u>33.7</u>	<u>145.8</u>	<u>73.0</u>	109.4	<u>35.0</u>	41.0	217.4	100.7

A: Source B: Target C: FewShot D: ZeroShot

Loss Balance

Transfer Mechanisms

 (\bullet)

Time	0.1 S	0.5 S	1.0 S
Benchmark	75.8	87.9	96.5
Benchmark-TWN	76.1	87.3	92.1
EMH	74.4	89.2	91.7
EMH-LB	70.8	85.8	88.5
EMH-LB-TWN	69.1	78.0	89.7
EMH-LB-TON	70.3	77.8	82.6
2SMH	63.7	80.7	78.9
2SMH-LB	53.4	70.9	81.7
2SMH-LB-TWN	50.8	70.2	77.9
2SMH-LB-TON	<u>47.0</u>	<u>69.9</u>	<u>76.5</u>

Developed Models

"Multi-Head Learning Model for Power
Consumption Prediction of Uncrewed Ground
Vehicles", submitted to AAAI 2023.

Goal: Predict the power consumption (watt) of UGV

Contribution:

- A. Propose 2-stage multi-head learning
- B. Multi-task for time-series prediction
- C. High transferability

 \bigcirc

Management

Developed Models

 "Call Auction-Based Energy Management System with Adaptive Subsidy and Dynamic Operating Reserve", Sustainable Computing: Informatics and Systems, 2022.

Goal: Maintain operating reserve rate at a stable level

Achieve the target distribution of energy supply

•

 \bigcirc

(Minimized Willing Price)

Dynamic Operating Reserve Rate:

 $DMOR_{d} = \alpha \times DMOR_{d-1} + (1 - \alpha) \times NM_{d}$ $NM_{d} = DMOR_{d-1} + (TarORR - ORR_{d-1})$

Adaptive Subsidy

 (\bullet)

Alg	orithm 1 Self-financing algorithm for adaptive subsidy
1: I	Remains = 0;
2: f	\mathbf{or} each <i>d</i> -th day \mathbf{do}
3:	$Income = Sum(\{ (EquP_{d-1} - TarP_{its}) \times TarQ_{its} \mid EquP_{d-1} > TarP_{its} \});$
4:	$Expend = Sum(\{ (TarP_{its} - EquP_{d-1}) \times TarQ_{its} \mid TarP_{its} > EquP_{d-1} \});$
5:	Balance = Income - Expend + Remains;
6:	if $Balance > 0$ then
7:	$MSI = \frac{Remains - Expend}{Income};$
8:	for each <i>its</i> -th type suppliers do
9:	if $TarP_{its} < EquP_{d-1}$ (negative subsidy) then
10:	$AdjIncome = (EquP_{d-1} - TarP_{its}) \times TarQ_{its} \times MSI;$
11:	$SUB_{its,d}$ = subsidy that just charge $AdjIncome$ from <i>its</i> -th type suppliers;
12:	if $TarP_{its} >= EquP_{d-1}$ (positive subsidy) then
13:	$SUB_{its,d} = TarP_{its} - EquP_{d-1};$

••••••••

	Tradition	Statistic	Proposed
Average Convergence Day	1725	1686	989
Average Failure Rate	13.09%	10.12%	0.03%
MAE of Operating Reserve Rate	6.3%	6.0%	$\mathbf{3.2\%}$
MAE of Supply Distribution	22.9%	21.7%	8.5%

Developed Models

 "Double-Environmental Q-Learning for Energy Management System in Smart Grid", submitted to AAAI 2023.

Contribution:

- A. Q-learning-based decision making
- B. Clear states and intuitive actions
- C. High interpretability

0.10	Tradition	Statistic	CAEMS	DEQEMS
CONVERGE	1710	1704	955	633
MAESD	23.0%	21.4%	8.5%	6.7%
MAEORR	6.4%	6.1%	3.2%	3.4%
FAIL	13.24%	11.24%	0.03%	0.03%
0.15	Tradition	Statistic	CAEMS	DEQEMS
CONVERGE	1726	1699	978	651
MAESD	23.2%	22.5%	8.1%	7.0%
MAEORR	6.3%	5.9%	2.9%	3.1%
FAIL	3.10%	1.94%	0.00%	0.00%
0.20	Tradition	Statistic	CAEMS	DEQEMS
CONVERGE	1796	1797	1023	680
MAESD	25.0%	25.1%	8.0%	6.8%
MAEORR	5.8%	5.2%	2.7%	2.8%
FAIL	0.09%	0.04%	0.00%	0.00%

What if get attacked?

Malicious Suppliers

Man-in-the-middle

Developing Models

 "Secure Q-Learning for Energy Management System in Smart Grid"

Contribution:

- A. Anomaly detection by deep learning
- B. Fuzzy control module

 \bigcirc

Connect with CoBotAGV

- AGV (supplier) select tasks (demander)
- Based on priority of weight, urgency, ... (price)
- Limited by the battery level (quantity)

	Price	Quantity
AGV	Reward	Battery Level
Task	Priority (weight, urgency)	Energy Consumption

Research Plan

Referenced from:

"Hybridization of evolutionary algorithm and deep reinforcement learning for multi-objective orienteering optimization", IEEE Transactions on Evolutionary Computation

AGV	Problem	Method
Task Selection	Knapsack	Multi-Objective Optimization
Path Arrangement	Traveling Salesman	Deep Reinforcement Learning

Roadmap

Prediction

1 Accepted 1 Submitted

Management

1 Accepted 1 Submitted 1 Writing

Scheduling

1 Planned

•

Current Issues

- 1. Data from CoBoatAGV
 - a. Power Consumption (motor, battery, ...)
 - b. Charging Information
- 2. Tasks of CoBoatAGV
 - a. Types of tasks
 - b. Types of anomaly

Future Works

- 1. Refine prediction models to fit CoBotAGV
- 2. Develop scheduling methods
 - a. Task selection

- b. Path arrangement
- 3. Establish management system for CoBotAGV

Thank You for Your Listening ! Questions or Suggestions?

E-mail: f08922011@ntu.edu.tw

EPARTMENT OF HO

52

No.

 (\bullet)

•

Questions or Suggestions?

Contact: f08922011@ntu.edu.tw

