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Agenda

● Datasets

● Reminder on past research

● Current work
● Multivariate forecasting

● Federated Learning

● Further steps

● Research papers published
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Datasets

● Formica-1 (CoBotAGV)
○ Different scenarios: straight-line runs, accelerations, retardations loaded and without any load

○ Momentary power consumption

○ Electrical, motion and status signals

○ 10 time series, without anomalies

● Husky A200
○ Robotic Unmanned Ground Vehicle platform

○ Power consumption, motion data, environmental data

○ 113 time series, without anomalies

● IEEE Battery
○ Acquired from BMW i3

○ Power consumption, vehicle data, motion data, environmental data

○ 72 time series, without anomalies
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Approach to anomaly detection

● One-class classification problem (normal vs. non-normal)

● Model is fitted to normal data

● Model evaluates unseen data which results in anomaly score

● In practice, there are two stages:
○ Forecasting of signal basing on model trained on normal data

■ Using historical data

■ Univariate

■ Multivariate

○ Evaluating the error between actual and forecasted data

4



Multivariate forecasting scheme
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Past research on forecasting of energy consumption

● Multivariate forecasting using different models
○ LSTM (Long Short-Term Memory)

○ GRU (Gated Recurrent Unit)

○ BiLSTM(Bidirectional LSTM)

○ BiGRU (Bidirectional GRU)

○ Each model was in 1- or 2-layers version

● Different sliding window sizes

● Reducing dimensionality of dataset
○ Selecting features based on correlation with energy consumption

● (agnostic of any higher level features like segments or jobs)
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Results

● Forecasting of energy data using neural networks works quite effectively

● Smaller networks (GRU) perform poorer than larger (LSTM)
● this can pose a problem while working on embedded environments

● Feature selection
● Can improve results

● Results in shorter processing times and smaller models

● This can be beneficial in embedded setting
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Improving forecasting

● Transformation of feature space: PCA, manifolds (Local Linear Embedding, 

Isomap, etc.)
○ Eliminate overfitting and non-relevant features

○ Reduce dimensionality 

■ improve embedding application possibilities

● Feature selection using evolutionary algorithms

● Adding historical energy data to model input
○ This was missed in previous research

○ Possibly can be helpful with lowering voltage of battery which posed a problem in previous 

research
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Improving forecasting

● Using more sophisticated Deep Learning models
○ SCINet [1]
○ DLinear [2]

● Evaluate also classic regression models and simple convolutional network [3]

[1] Time Series is a Special Sequence: Forecasting with Sample Convolution and 
Interaction, Minhao Liu, Ailing Zeng, Zhijian Xu, Qiuxia Lai, Qiang Xu, 2021
[2] Are Transformers Effective for Time Series Forecasting?, Ailing Zeng, Muxi Chen, 
Lei Zhang, Qiang Xu, 2022
[3] A Comparison between ARIMA, LSTM, and GRU for Time Series Forecasting, 
Peter T. Yamak, Li Yujian, and Pius K. Gadosey. 2019
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Federated learning research

● Comparison of various training strategies
○ Splitting training data equally for nodes, retaining 10% as test set

■ E.g. for 3 nodes: 30% on each node

○ Each node’s set split in halves swapped between iterations

■ E.g.: in odd iterations use the first 15%, then average weights, in even iterations use the 

other 15%, average weights again

○ Using whole training data as test set to improve generalization abilities
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Federated learning research

● Different strategies of merging model weights

● In standard flow, a normal average is used

● We evaluate weighted averaging of model weights
○ Weight based on quality of prediction on specific node

○ Here proper choosing of test set is to be carefully examined
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Federated learning research

● Using data from AGV instead of NAB
○ Each series as learning data for a separate node

○ Use the strategies above to evaluate them

● Using models evaluated during previous research, i.e. (Bi)LSTM, (Bi)GRU
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Further steps

● Using the newest data from CoBot (gathering started in July)
○ Longer routes

○ Longer times

○ Longer battery unloading

○ More load scenarios (no load / half load / full load / overload)

● Introducing artificial anomalies to real energy data 
○ Not a straightforward process
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Papers

● Federated Learning for Anomaly Detection in Industrial IoT-enabled 

Production Environment Supported by Autonomous Guided Vehicles, B. 

Shubyn, D. Mrozek, T. Maksymyuk, V. Sunderam, D. Kostrzewa, P. Grzesik, 

P. Benecki, International Conference on Computational Science 2022

● (October 2022) Forecasting of Energy Consumption for Anomaly Detection in 

Automated Guided Vehicles: Models and Feature Selection, P. Benecki, 

D. Kostrzewa, P. Grzesik, B. Shubyn, D. Mrozek, International Conference on 

Systems, Man, and Cybernetics 2022
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